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Abstract 

The fragmentation of cosmic string loops is discussed, and the results 
of a simulation of this process are presented. The simulation can evolve 
any of a large class of loops essentially exactly, including allowing fragments 
that collide to join together. Such reconnection enhances the production of 
s m a l l  fragments, but not drastically. With or without reconnections, the 
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fragmentation process produces a collection of non-self-intersecting loops 
whose typical length is on the order of the persistence length of the initial 
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1: Introduction 

It  has been suggested that string-like topological defects produced in a phase tran- 2 
sition near the grand unification scale could have interesting cosmological conse- 
quences, and in particular that these "cosmic strings" might be the density inho- 
mogeneities responsible for initiating the formation of such structures as galaxies 
and clusters of galaxies. (For reviews see Turok[l], and Vilenkin[2].) This sce- 
nario relies on the idea that the evolution of the string network eventually settles 
down to a "scaling solution" in which, at any time, there is a network of long 
strings plus many short loops, with the persistence length of the long string, the 
typical spacing between strings, and the typical loop size all being proportional to 
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the time t .  In this case the energy density in string scales like t -2  and remains 
a fixed fraction of the total energy density. To get such behavior it is necessary 
for strings to be able to reconnect the other way, or “intercommute”, when they 
intersect each other, an assumption now supported by several calculations [3,4]. 
Long strings can then intersect themselves and chop off closed loops, thus losing 
energy as they must for scaling to occur. The closed loops may also self-intersect 
and further break up (which is the topic of this paper), but if not they can at least 
decay by gravitational radiation, each loop losing energy at a rate E = -I’Gp2 

where p is the string tension and I’ is a factor which depends on the loop’s shape 
but not on its length [5,6,7,8]. (Here and throughout this article c = 1.) It will 
also occur that loops will collide with and join onto long strings or other loops, so 
these processes need to be understood too. 

The simulations of Albrecht and Turok[9,10], and of Bennett and Bouchet [ll], 
which numerically integrate the string equations of motion in an expanding uni- 
verse, taken together with analytical modelling [12,13,14], now strongly suggest 
that string evolution will indeed approach a scaling solution from a wide range of 
initial conditions. These two approaches are to some degree complementary: nu- 
merical simulations are necessary to check the assumptions and fix the parameters 
of analytical models, which in turn are necessary to understand the long time scale 
behavior of the network (such as the accumulation of short loops and their slow 
decay by gravitational radiation) since these simulations can study times only up 
to a few times the initial time before effects due to the finite size of the box in which 
the simulation is done become significant. Since these simulations discretize the 
string equations of motion they are also limited in the smallest scale phenomena 
that can be resolved. One approach to understanding possible resolution effects 
would be to vary the resolution and see what else changes. Another approach, 
taken here, is to study the simpler problem of a single loop in flat space-time, in 
which case discretization can be avoided. 

I have studied loop fragmentation in flat space-time by means of a simulation 
which, for a large class of initial conditions, evolves the string essentially exactly 
between crossings, describes the string after an intercommutation as precisely as 
before, and allows the production of arbitrarily small loops. It is known that 
there are many loop solutions which do not self-intersect [15,16,17], so it is natural 
to ask whether fragmentation eventually produces a collection of loops which are 
all non-self-intersecting; and, if it does, to study the properties of these stable 
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fragments. Scherrer and Press also have studied loop fragmentation by choosing 
loops randomly from a certain class and explicitly evolving them, and find that a 

finite number of non-self-intersecting fragments are produced [18]. The principle 
differences between the present work and theirs are that I sample the space of loops 
in a different way, more naturally related to the loops produced off long string; 
and that I include the joining together of fragments that collide. This reconnection 
may be important to understand since each intercommutation creates 4 kinks and 
so the joining of two loops is not the inverse of one breaking in two. Since the 
statistical mechanics of string strongly favors short loops [19,20], it is reasonable 
to expect that the joining of fragments that collide and the associated creation of 
kinks will, by helping the string explore its phase space, lead in the end to smaller 
fragments. We will see that this is indeed what happens. 

The following section presents the equations of motion of a loop and describes 
the simulation. Section 3 presents results on the length and velocity distributions 
of the fragments and section 4 discusses the implications of these results for our 
understanding of the evolution of the whole string network. 

2 Loop Motion and the Simulation 

For loops whose size is small compared to t and large compared to the string width, 
the equations of motion may be taken to be:[21] 

and 
(X)' + (x')2 = 1 (3) 

where x G ax/& and x' E Ox/&, and u is a parameter which varies along the 
string in such a way that the energy per unit u is equal to a constant, p, the string 
tension. The general solution to Eq. (1) is 

1 
2 

x(u , t )  = - [a(u-) + b(u+)] 
where u* = u f t ,  and 

(a')' = (b')2 = 1 

(4) 

( 5 )  
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in order to satisfy equations (2) and (3). Let L be the total length of a around 
the loop. Then, in order for the loop to be closed, x ( a , t )  = x ( a  + L , t )  or 

- [a(a- + L )  - a(a-)] = [b(a+ + L )  - b(a+)] = A ( 6 )  

where A is a constant. Note that x ( a ,  t + L )  = x ( a ,  t) + A. After a time 6t = L 
the loop returns to its original shape but translated by A, so the center of mass 
velocity is v = A / L .  In the center of mass frame v = 0 and, by Eq. ( 6 ) ,  the 
functions a and b are both periodic. One may then think of a and b as closed 
curves, parametrized by their length in order to satisfy Eq. ( 5 ) .  A natural way to 
sample the space of such curves is to consider closed random walks. 

I consider the class of loops for which a and b are closed random walks of N 
equal sized straight steps. Equivalently a’ and b’ each take on N discrete values 
a’; and b’; lying on the unit sphere, with 

N N -. 

a’; = b‘; = 0 (7) 
i=l i=l 

The curves a, b and x(a , t )  = f [a(a-) + b(a+)] all have a persistence length 
4 = L / N ,  (aside from the correlation among the 4 and b: due to the constraint 
expressed in Eq. (7), which should be only a small effect for large N). This provides 
a natural way of relating these loops to the full string network, which is also 
described in terms of a persistence length. 

- The first task for the simulation is to generate random loops of this type, Le. 
to generate N unit vectors a: which sum to zero, but are otherwise random, and 
similarly for the b: . The code first chooses all the a: to be along the x, y and z 

axes, making sure to go in the +x and -x directions an equal number of times, 
(and likewise for y and z,) to ensure that a is closed. Next a pair of these vectors 
is selected and they are rotated by a random angle about the axis defined by 
their mean. This operation preserves Ea:, so a remains closed. This operation is 
repeated many times, selecting a different pair each time, in order to randomize 
the a: . An independent set of b: is similarly constructed. 

After defining an initial ‘parent’ loop in this manner, the simulation searches 
for crossings in successive time intervals until it finds one. The intercommutation 
probability is taken to be 1, so this first crossing results in the loop breaking in 
two; subsequent crossings may be between distinct loops in which case they join 
together, or ‘reconnect’. The search for crossings then resumes, starting at the time 
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of the intercommutation. The motion of a (non-self-intersecting) loop is a periodic 
oscillation plus a constant velocity translation, so when all loops have survived 
for one period we know that none are self-intersecting. This is the criterion I use 
for the end of the fragmentation process. It is possible for distinct fragments to 
collide after this time, but this was found to be a rare occurence. Figure (1) shows 
a typical loop with N = 10, at a time shortly before the first crossing, and at a 
later time after fragmentation is complete. In order to save on computation time, 
fragments shorter than a certain length L, are checked only for self-intersections 
and not for collisions with other strings. The effect of this cutoff is discussed in 
the following section. 

The simulation must find where the string crosses itself, i.e. find t and distinct 
6 1  and 6 2  for which x(u l , t )  = x ( q , t ) .  Loops of the type considered here initially 
have N evenly spaced kinks propagating in each direction (left and right) around 
the loop, joined by straight segments. When a left-moving kink and a right-moving 
kink pass each other, a straight segment appears between them and grows longer 
as they draw apart. Eventually a right-moving kink coming in from the left and 
a left-moving kink coming in from the right shrink the segment back down until 
it disappears. The simulation searches for crossings in a given time interval by 
finding all straight sections whose lifetimes overlap that interval, and checking 
each pair of them. On each straight segment, x' and x are constant. The world 
sheet of such a segment is a parallelogram, a subset of the world-sheet of an infinite 
moving line which may be parametrized as x(c,t) = xo + x'c + xi? for a suitable 
choice of XO. The time t of crossing of two such lines, and the u1 and uz where 
they cross, may easily be found in closed form; then if (u1, t )  and (02 ,  t) lie in the 
regions of u, t space corresponding to their respective straight segments, a crossing 
has been found. In this way d pairs are checked and the earliest crossing in the 
time interval is found. 

Next the strings at the crossing point must be intercommuted, breaking one 
loop into two (if a loop has self-intersected), or joining two into one (if one loop has 
intersected another). Afterwards the string will still consist of straight segments 
and kinks. This means that each fragment may still be described by an a and a 
b which consist of straight sections, but now the lengths of these straight sections 
may be unequal, and since the fragment may have center of mass motion, a and 
b will in general not be closed. The simulation, taking this properly into account, 
either defines two new a (b) functions using the a (b) of the loop which has self- 
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intersected, or defines a new a (b) using the a’s (b’s) of the two loops which have 
intersected, as the case may be. The description of the string is just as precise 
after intercommutation as before. 

A peculiarity of the class of loops considered here is that fragments with less 
than 5 kinks are not produced. These loops will consist of straight segments and 
kinks in any frame, so 4 kinks (2 moving left, 2 right) is the minimum number 
since Eq. (7) must hold in the rest frame. Such a 4 kink loop is highly degenerate: 
in its rest frame its motion lies in a plane. Only a set of zero measure of initial 
loops would allow the production of such loops. When a loop breaks in two, each 
fragment gets 2 of the 4 new kinks (1 left-, 1 right-moving), so if a 5 kink fragment 
is created it will have 3 old kinks, of which 2 will be going the same way. This 
implies that the shortest fragment that an initial loop can break off is C, = L/N, 
the spacing between left-(right-)moving kinks. 

3 Results 

To find the probability, Po, that loops of the type described above do not self- 
intersect, a large number of loops (e.g. 10‘ for N = 9) were checked for self- 
intersections. Figure (2) shows the results. The curve plotted is Po = 13(2.45-N). 
Before N has become very large, Po is already tiny; in a stochastic fragmentation 
process characterized by a fixed probability of fragmentation q, values of q so close 
tarunity would imply that a loop would almost always break into an infinite number 
of fragments [22,18,13,14], but this is not observed. Indeed, if reconnections are 
neglected, the fact that (for this class of loops) every fragment has at least 5 kinks 
whereas each intercommutation produces only 4 means that in breaking a loop up 
one eventually runs out of kinks. If Nj fragments are produced (by Nf - 1 self- 
intersections) the number of kinks will be 2N from the parent loop plus 4(Nf - 1) 
from intercommutations, and must be at least SNf ,  so N f  5 2N - 4. When 
reconnections axe included this limit does not hold. 

The length distribution of the fragments remaining when fragmentation is com- 
plete was measured for various values of N = L/b, and for comparison the re- 
connection of fragments that collide was included in some runs and neglected in 
others. Let n(z)dz be the mean number of fragments per parent loop produced 
with z t/b lying between z and 2 + dz. Then the fraction of the parent 
loop’s energy which (on the average) goes into fragments in this size range is 

- 
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N-’zn(z)dz EZ c(z)dz. For small N ( 5  was the smallest N I considered), E ( X )  

is peaked around z = 1.4, and the production of short loops is slightly enhanced 
by including reconnections. As N is increased, c(z) at small z increases. This 
increase is only slight if reconnections are neglected, but if they are included it is 
more pronounced: as N is increased the left side of the peak fills in until ~ ( z )  is 
roughly flat for small z. Figure (3), showing E ( X )  for N = 15 with and without re- 
connections, illustrates this behavior. At larger z, c(z) falls like x-’. The number 
of parent loops evolved to produce these plots was 90 with reconnections, and 400 
without. As mentioned above the simulation does not check loops shorter than 
a certain length L, for reconnection, although it does find their self-intersections 
and allow them to break up. Neglecting reconnection is therefore equivalent to 
setting C, = L / 2 .  (There must be at least 2 fragments longer than 1, to find a 
reconnection.) 

An interesting quantitative measure of the typical length of fragments produced 
is 

This is interesting because if it is assumed that all the loops produced at time t in 
the scaling solution have the same length t = rt then, in the radiation dominated 
era, the energy densities in loops ( p i ) ,  in long string ( p , )  and in gravitational 
radiation from string ( p P )  are related by [12,23,10] p ~ / p ,  a pBt/p, a yf .  Since 
in the scaling solution the persistence length is proportional to t we may say the 
loops have length I = ZG and that these density ratios are proportional to a i .  If, 
as is actually the case, the loops have a range of sizes, we need to take a mean, 
weighting each value of z i  by the amount of energy going into loops of that size, 
which is how a is defined. Thus a tells us how the length distribution of fragments 
produced effects the energy density in loops and in gravitational radiation. The 
effect of the cutoff length for reconnections was studied for N = 10 by doing 
runs with several different values of A?, ranging down to Cc = 0.14. There was no 
sign of pathological behavior as 4, goes to zero. The mean number of fragments 
produced, < Ni >, was found to increase from < Nf >= 8.6 without reconnections 
to < N j  >= 17 for C, = 0.14, while a! only decreased about 10%. Figure (4) shows 
a as a function of N both with reconnections and without. The decrease of a with 
N is somewhat greater if reconnections are included, but in either case it remains 
of order unity for the values of N considered. We see that for these loops the 
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important length scale in fragmentation is the persistence length. Whereas in the 
stochastic fragmentation model the typical fragment length is determined by the 
parent’s length together with the fragmentation probability, for these loops it is 
essentially set by the persistence length alone. 

The time scale for fragmentation is on the order of the period of the parent 
loop. The mean time of the last intercommutation found was between 0.2L and 
0.4L over the range of N and 1, considered. 

The velocities of the fragments affect the evolution of the string in that faster 
fragments will be more likely to collide with other string, and because the red- 
shifting away of the center of mass motion of fragments removes energy from the 
string network. Also, structure formation by loops is affected by their motion [l]. 
Figure ( 5 )  shows the mean speed of fragments as a function of 2. The data plotted 
is without reconnections; including reconnections left < v > the same within the 
statistical uncertainty. The mean speed of small fragments is about 0.55, while for 

larger fragments < v > falls of somewhat faster than 2-5, the curve shown in Fig. 
( 5 )  being < v >= 0 .7~- ’ *~ .  The mean fraction of the parent loop’s energy which 
goes into center of mass kinetic energy of the fragments increases from 0.109 f .007 
for N = 5 to 0.170f.006 for N = 20, with C, = 0.5; again no statistically significant 
variation with L, was observed. 

1 

4 Conclusions 

For a large class of loops the fragmentation of an isolated loop produces a finite 
number of non-self-intersecting fragments, in agreement with the findings of Scher- 
rer and Press [18] for a different class of loops. The typical length of these stable 
fragments is on the order of the persistence length of the parent loop. This behav- 
ior is quite different from that predicted by a stochastic model of fragmentation. 
When the reconnection of fragments which collide is taken into account the typical 
fragment length decreases somewhat, but the above conclusions still hold. These 
results strongly suggest that loop fragmentation alone does not cause much energy 
to flow into loops much shorter than the network’s persistence length. This is 
good news for the numerical simulations of Albrecht and Turok and of Bennett 
and Bouchet. However it should be emphasized that I have here studied only 
an isolated parent loop, and the reconnections I have included in the calculation 
axe only those between fragments of that parent loop. Actually, a loop breaking 
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off the network can reconnect with long string or with one of the many slowly 
decaying loops produced at an earlier time. Understanding the reconnection of 

recently created loops to long string (or to each other) should just require a resolu- 
tion good compared to the persistence length, e,, which the numerical simulations 
have. However, in the scaling solution, most of the energy in string is in loops 
much shorter than 4; collisions involving these may have an important effect, but 
understanding this by simulation would require very high resolution. The under- 
standing of loop fragmentation derived from the simulation described herein should 
be helpful in constructing a good model of these processes; already it is apparent 
that reconnections serve to enhance the chopping of string into shorter pieces. 
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Figure 1: Fragmentation of a typical loop with N = 10, showing (left) the parent 
loop shortly before the first self-intersection, and (right) the fragments remaining 
at end of the fragmentation process. In this case there were 13 self-intersections 
and 3 reconnections resulting in 11 fragments. 

Figure 2: Probability Po that a parent loop has zero self-intersections, as a function 
of N. 

Figure 3: The function ~ ( z ) ,  describing the energy going into fragments of different 
lengths, neglecting reconnections (top), and including them (bottom). 

Figure 4: The dependence of a on N, with reconnections and without. 

I 

Figure 5:  The mean speed of fragments as a function of x. 
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Figure 3: The function ~ ( z ) ,  describing the energy going into fragments of different 
lengths, neglecting reconnections (top), and including them (bottom). 
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